

Institute of Crop Science Department of Fertilization and Soil Matter Dynamics Jonas Frößl*, Michael Scholl, Jens Hartung, Reiner Ruser, Torsten Müller

Incubation study on the effect of soil moisture and rainfall on NH₃ emissions from different inhibited urea fertilizers

Introduction:

- NH₃ emissions are affected by soil and weather conditions after fertilizer application.
- Influence of soil water content likely not linear, low NH₃ emissions only under dry and very wet soil moisture conditions.
- With medium water content: fast dissolution of the fertilizer granule, fast hydrolysis of urea,
- low pH buffering due to low spatial distribution in the soil (see Fig 1), resulting in high emission potential.
- How do urease- and nitrification inhibitors interact on NH₃ emissions at different soil water contents and after rainfall?

Materials & Methods:

• Incubation study in controlled environment $\rightarrow NH_3$ emission potential

Fig 2: Experimental setup from main incubation glass (left), NH ₃ scrubbing
bottle containing H ₂ SO ₄ (middle) and incubation glass for soil samples (right)

H₂SO

	Experimental run 1	Experimental run 2	
 Influencing factor 	Soil water content	Rainfall after fertilization	
• Soil	Sandy loam		
 Fertilizer rate 	100 kg N ha ⁻¹		
 Air exchange 	1 headspace min ⁻¹		
 Fertilizer treatments 	Unfertilized control (N0), Urea (U), Urea + urease inhibitor (U+UI), Urea + urease inhibitor + nitrification inhibitor (U+UI+NI)		
 Gravimetric water content 	10, 17.5, and 25 %	17.5 %	
 Simulated rainfall 	None	1, 5, 10 mm 4 days after fertilizer application	

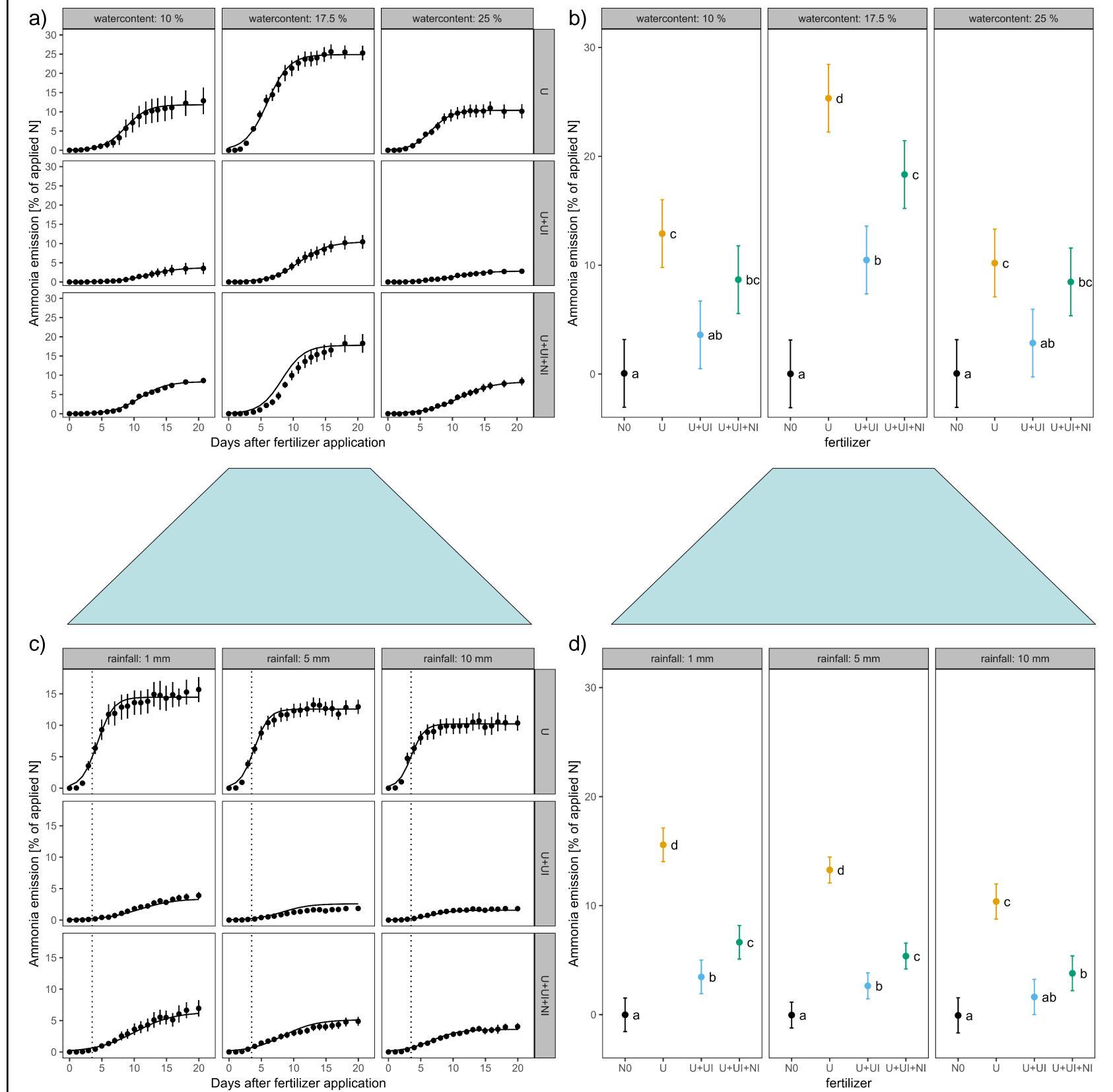
Fig 1: Hygroscopic urea granule on dry soil starting to dissolve after a dewy night.

Results & Discussion:

Water content:

airstream

fertilizer


- Low water content resulted in low emissions (Fig 3b), because of the slow fertilizer granule dissolution. No NH₄⁺ accumulation due to simultaneous nitrification (not shown).
- Medium water content resulted in highest NH₃ emissions (Fig 3a), as NH₄⁺ release from urea hydrolysis was faster than NH₄⁺ oxidation during nitrification (not shown).
- High water content resulted in low emissions, likely due to a better diffusion of urea exploiting a higher soil volume, thus increasing soil pH buffer.

Fertilizer type:

Urease inhibitor resulted in a slower NH₄⁺ release compared to none inhibited urea. A lower NH₃ peak occurred 4 days delayed.
As supported by the N_{min} values (data not shown), the nitrification inhibitor resulted in an accumulation of NH₄⁺ thus enhancing NH₃ volatilization, compared to U+UI (Fig 3b).

Rain amount:

The higher the rainfall, the lower the NH₃ emissions (Fig 3d).
A combination of rainfall and inhibitor always decreased emissions (Fig 3d) compared to no rainfall (Fig 3b).
At rainfall amounts ≥ 5 mm, NH₃ emission from U+UI treatment and N0 did not significantly differ (Fig 3d).
Each rainfall amount (Fig 3d) significantly reduced NH₃ loss when

compared to the treatment without rain (Fig 3b).

Conclusion

Soil moisture is a strong driver for NH₃ emissions after fertilizer application. Rainfall effectively decreases emissions. UI reduces emissions effectively, while UI+NI can increase emissions.

Fig 3: a)+c) Daily cumulative emissions (kg N ha⁻¹ day⁻¹, corresponding to % of applied N), as affected by fertilizer and gravimetric soil water content (a) or by fertilizer and rain amount (c). Error bars give standard deviation. b)+d) Cumulative emissions at last experimental day, as affected by fertilizer and soil water content (b) or by fertilizer and rain amount (d). Dots and error bars represent estimated means \pm 95% confidence interval per group. For each water content and rain amount separately, means not sharing any letter are significantly different by the Tukey-test (p<0.05).

